If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-5t+6.25=0
a = 1; b = -5; c = +6.25;
Δ = b2-4ac
Δ = -52-4·1·6.25
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$t=\frac{-b}{2a}=\frac{5}{2}=2+1/2$
| 3x-17+x+2x-5=180 | | (7x-14)(3x+1)=(21x+7)(x-2) | | S+50•(6)=3s | | 5x-2=7x+5 | | 3=x+7/5 | | (4x+1)(x+3)=0 | | 5a-4=37 | | 2c-12=9+2 | | 28=-6y-12+12y | | 2x-15=4x+7 | | 2/9n=-7 | | 16x+(4x-2)=3 | | 2(w(6+2w)=90 | | 24=6h | | -6-4(6x+24)=-6 | | -5x-45=-3x+5 | | X^2/2=x-5 | | 2x−77=9x−23 | | 3.7+y=10.7;y=10.7 | | (17-x)/4=(-10) | | 0.8÷x=2÷10 | | 13.56+0.07x(x+3)=14.31-0.11x | | -10=2(y+5)+2y | | (5x+9)/(-6)=(-2) | | 13.56+0.07(x+3)=14.31-0.11 | | 3x2-2x+4=0. | | t÷4-4=12 | | X^2+17=6x | | -23=6(x-2)+5x | | X+3.7+y=10.7 | | a÷13=13 | | 6p+2=4p+3 |